

-
产品中心
- 植物根系
- 原位根系分析仪
- 平板根系分析仪
- 台式根系分析仪
- 根盒成像系统
- 根际环境监测
- 雷达监测系统
- 三维CT成像系统
- 温室气体通量
- 多参数土壤呼吸测量
- 多通道气体分析系统
- 土壤CO2剖面监测
- 变温培养测量
- 植物科学
- 叶绿素光合荧光
- 植物茎流
- 叶片生长
- 果实/茎秆生长
- 表型成像光谱仪
- 植物效率分析仪
- 液相氧电极
- 田间作物表型
- 生理生态监测系统
- 种子科学
- 种质分析仪
- 种子表型分析仪
- 种子活力监测系统
- 种子成熟度分析仪
- 土壤科学
- 氧化还原电位测量
- 土壤水分测量
- 土壤pH测量
- 土壤氧气测量
- 土壤养分测量
- 土壤溶液取样系统
- 其他测量
- 环境水体
- 环境气体监测
- 水体气体测量
- 藻类分析仪
- 气象站监测
- 水质分析仪
- 水位测量
- 系统方案
- 智慧生态
- 智慧森林
- 智慧湿地
- 智慧农业
-
解决方案
- 植物根系
- 温室气体通量
- 智慧生态
- 智慧森林
- 智慧湿地
- 智慧农业
-
新闻中心
-
关于我们
-
联系我们
-
文件下载


-
产品中心
- 植物根系
- 原位根系分析仪
- 平板根系分析仪
- 台式根系分析仪
- 根盒成像系统
- 根际环境监测
- 雷达监测系统
- 三维CT成像系统
- 温室气体通量
- 多参数土壤呼吸测量
- 多通道气体分析系统
- 土壤CO2剖面监测
- 变温培养测量
- 植物科学
- 叶绿素光合荧光
- 植物茎流
- 叶片生长
- 果实/茎秆生长
- 表型成像光谱仪
- 植物效率分析仪
- 液相氧电极
- 田间作物表型
- 生理生态监测系统
- 种子科学
- 种质分析仪
- 种子表型分析仪
- 种子活力监测系统
- 种子成熟度分析仪
- 土壤科学
- 氧化还原电位测量
- 土壤水分测量
- 土壤pH测量
- 土壤氧气测量
- 土壤养分测量
- 土壤溶液取样系统
- 其他测量
- 环境水体
- 环境气体监测
- 水体气体测量
- 藻类分析仪
- 气象站监测
- 水质分析仪
- 水位测量
- 系统方案
- 智慧生态
- 智慧森林
- 智慧湿地
- 智慧农业
-
解决方案
- 植物根系
- 温室气体通量
- 智慧生态
- 智慧森林
- 智慧湿地
- 智慧农业
-
新闻中心
-
关于我们
-
联系我们
-
文件下载
GT5000便携式多参数土壤呼吸测量系统
GT5000便携式多参数土壤呼吸测量系统是芬兰Gasmet公司生产的一款基于傅里叶变换红外光谱(FTIR)技术的便携式高精度土壤温室气体排放监测系统。该仪器可以在数秒内同时测定多种主要的温室气体成分,如:N2O,CH4,CO2,H2O,CO和NH3,且测量精度可达ppb级。GT5000便携式多参数土壤呼吸测量系统可用于农田,湿地,森林,牧场,电厂,火灾现场等各种环境中的温室气体通量测量。
GT5000配备功能强大的Calcmet软件,它支持测量结果的在线查看和以往测量数据的进行对比分析。便携式自动土壤呼吸室是一种对于来自土壤的气体进行收集测量的土壤呼吸测量装置,可实现对土壤温室气体通量走航式多点位巡测。土壤呼吸系统装有便携式把手,可轻便携带。
主要特点
- 傅里叶变换红外光谱技术;
- 同时测量N2O,CH4,CO2,H2O,CO和NH3等6种温室气体,最多可同时测量50种气体;
- 多种无线连接方式,如WI-FI或蓝牙;
- 无需专业知识,用户可通过导航进行操作,一键测量和即时的在线处理结果;
- 五种不同的视图展示相关的测量信息;
- 自动气室有机械臂,可缓慢升降;
- 气室的内部进出回路可有效的促进气体混合,通气口的设计可确保稳定的大气压力,配备GPS模块、WI-FI通讯模块和环境传感器(土壤湿度、温度和电导率参数);
技术参数
1.测量原理:FTIR傅里叶变换红外光谱;
2.气体测定种类:可同时测定50种气体;
3.响应时间:通常<120s,基于所测定的气体和测量时间;
4.电池:锂离子电池,单节电池可维持3小时;
5.充电电源:115/230V AC;
6.分析软件:Calcmet(需Win7或10操作系统);
7.数据连接:USB,以太网,蓝牙,WI-FI;
8.采样泵流速:2 L/min;
9.气体采样过滤:带有2μm孔径聚四氟乙烯过滤器的采样探头;
10. 采样气体进/出口配件:6mm快速接头;
11.外壳:
大小:450×287×166 mm(H×W×D)
材料:ABS PC;
防护等级:IP54(适用于野外便携式设备)
12.重量:9.4kg(含电池)/8.0kg(不含电池)
13.光谱仪:
分辨率:8cm-1;
扫描频率:10次/s;
检测器:碲镉汞(MCT)光电探测器(珀尔帖致冷);
分束器材料:硒化锌(ZnSe);
波数范围:900-4200cm-1;
14.样品室
结构:多通道,固定光程长度5m;
反射镜:固定式,镀金;体积:0.5L;
操作条件
15.采样气体压力:环境压力;
16.采样气体温度:环境温度(-5~40℃),无冷凝;
17.操作温度:-5~40℃(短期),5~30℃(长期);
性能指标
18.零点漂移:在环境背景下每24小时内漂移小于测量范围的2%;
19.灵敏度漂移:无;
20.线性偏差:小于测量范围的2%;
21.温度漂移:每10K温度变化,小于测量范围的1%。
(带温度补偿)
22.压力影响:对于1%的测量压力变化,测量值将会出现1%的变化。(带压力补偿)
23.周围环境测量间隔:建议24h。
24.几种主要温室气体的测量范围和检测限
H2O:0-5%;最小检测限:0.010 Vol-%;
CO2:0-2000 ppm; 最小检测限:5ppm;
CH4:0-100 ppm; 最小检测限:40ppb;
N2O:0-50 ppm; 最小检测限:7ppb;
NH3:0-100 ppm; 最小检测限:70ppb;
CO:0-200 ppm; 最小检测限:70ppb;
自动土壤通量气室
呼吸室配备有土壤参数传感器(图左)和土壤环(图右)。传感器测量参数包括土壤温度、土壤湿度和电导率。
技术参数
- 叶室类型:暗室(不锈钢)
- 整体外形尺寸:30(L)*27(W)*34(H) cm
- 工作方式:自动开合
- 测量方式:流通式测量
- 外置传感器:空气温度、气压、土壤温湿度
- 腔室体积:2100 cm3
- 测量体积:3670 cm3
- 测量面积:314 cm2
通量计算软件
GT5000配备功能强大的Calcmet软件,它支持测量结果的在线查看和以往测量数据的进行对比分析。该系统通过精密监控气体在系统内部的流动过程,实现对内部气体通量的精确测定。测量前,用户在配套的软件中预先设定好相关参数,以确保获取的测量数据准确无误。
群落静态光合箱(可选)——生态系统净交换量(NEE)测量
- 配备系统控制单元(白盒),单元包括可充电锂电池、WI-FI通讯模块、GPS模块、空气温湿度传感器、土壤传感器、混气风机电源接口;
- 高透明亚克力材质,可定制形状尺寸,内置气体混合风扇;
- 配合通量计算软件,NEE测量结果可直接显示并保存;
- 可以测量单个植物或群落(如灌木和草地)的净光合速率。
技术参数
- 外形尺寸:50(H) x 34(D) cm(可定制形状和尺寸)
- 腔室容积:196250 cm³
- 材质:亚克力,透明或不透明
- 配合通量计算软件,NEE测量结果可直接显示和保存
自动开闭静态箱
自动NEE室,满足长期连续NEE测量需求;
- 通量计算软件可设置自动室的启闭时间和周期;
- 全开放对流设计,腔体打开时可与环境气体充分交换;
- 太阳能供电,满足野外长期使用要求
特点
- 测定时间短,可长期定点观测
- 自动控制叶室开合,可长期无人看守自动测量
- 抗风阻,安全稳定
- 过滤网头设计,防止颗粒物进入管路
- 安装方便,操作容易
技术参数
- 叶室样式:透明/非透明
- 叶室尺寸:50cm(L)*50cm(W)*40cm(H)
- 叶室重量:约15kg
- 叶室工作方式:可控自动旋转开合(上窗90°,侧窗45°)
- 驱动方式:电动推杆
- 材质:铝合金、进口透明PC板
- 控制方式:主控机控制
- 供电:12V
- 叶室测量体积:90.5L
- 叶室测量面积:0.1936m2
- 温度监测:-40℃—85℃
- 密封方式:密封条密封
走航式水面通量气室(型号:WSF-20)
走航式水面通量气室是一种对于来自水体的气体进行收集测量的水-气界面通量测量装置,可实现对水-气界面温室气体通量走航式多点位巡测。土壤呼吸系统总重约6.5 kg,可轻便携带。
主要特点
- 走航式、多点位巡测
- 结构紧凑,体积小,重量轻,携带方便
- 圆形浮圈设计可漂浮水面、阻抗水流
- 供 电:内置12 V 3000 mA锂电池
- 通讯方式:蓝牙
- 内置GPS定位模块
智能多路控制系统
- 通道数:4~36通道可选
- 操作温度:-20 ~ 50 °C
- 湿度:<99% R.H,无冷凝
- 操作方式:触摸屏
- 取样流速:标准1L/min,可调
- 数据计算:有(通量,呼吸速率)
- 电源:12VDC
- 可选配模块:可增加其他气体测量模块,土壤温湿度传感器、4G传输模块、GPS模块等
- 扩展性:主控板预留多个数据传输通道,可根据客户需求追加配件、传感器等,软件自主开发,可同步对应追加的相关传感器进行数据集成。可同时配套土壤界面观测研究的土壤呼吸室、群落光合箱,实现界面排放的多种立体式痕量气体监测系统。
长期土壤呼吸室
- 特殊的动压平衡设计,更大程度模拟真实环境
- 可实现长期、连续工作
- 结构紧凑,体积小,重量轻,携带方便
- 曲线型设计,防水防尘效果好,适合野外测量
- 航空插头,快捷、安全、准确
- 控制方式:复路系统控制(配套)
技术参数
- 土壤呼吸室类型:透明(亚克力)/非透明(铝合金)
- 整体外形尺寸:440mm(L)×260mm(W)×260mm(H)
- 腔室尺寸:200mm(D)*130mm(H)
- 控制方式:主控机控制
- 整体重量:5.0Kg
- 测量方式:动压平衡流通式测量
- 测量体积:4000cm3
- 测量面积:315cm2
- 供电:12V
- 控制方式:主控机控制
- 工作方式:可控自动开合
地下剖面取气装置
- 技术原理:半透膜取气技术
- 尺寸:500 mm (L) x 6(可定制)
- 材质:半透膜,铝合金支架
- 控制方式:主控机控制
- 传感器:温度传感器
参考文献
- Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., ... & Matvienko, B. (2005). Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global biogeochemical cycles, 19(4).
- Guérin, F., Abril, G., Tremblay, A., & Delmas, R. (2008). Nitrous oxide emissions from tropical hydroelectric reservoirs. Geophysical Research Letters, 35(6).
- Madsen, J., Bjerg, B. S., Hvelplund, T., Weisbjerg, M. R., & Lund, P. (2010). Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livestock Science, 129(1-3), 223-227.
- Bastien, J., Demarty, M., & Tremblay, A. (2011). CO2 and CH4 diffusive and degassing emissions from 2003 to 2009 at Eastmain 1 hydroelectric reservoir, Québec, Canada. Inland Waters, 1(2), 113-123.
- Greenhouse Gas Emissions from US Hydropower Reservoirs: FY2011 Annual Progress Report. ORNL/TM-2012/90.
- Stewart, A. J., Mosher, J. J., Mulholland, P. J., Fortner, A. M., Phillips, J. R., & Bevelhimer, M. S. (2011).
- Storm, I. M., Hellwing, A. L. F., Nielsen, N. I., & Madsen, J. (2012). Methods for measuring and estimating methane emission from ruminants. Animals, 2(2), 160-183.
- Lassen, J., Løvendahl, P., & Madsen, J. (2012). Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows. Journal of Dairy Science, 95(2), 890-898.
- Inthapanya, S., Preston, T. R., Khang, D. N., & Leng, R. A. (2012). Effect of potassium nitrate and urea as fermentable nitrogen sources on growth performance and methane emissions in local “Yellow” cattle fed lime (Ca (OH) 2) treated rice straw supplemented with fresh cassava foliage. Mitigation of methane production from ruminants; effect of nitrate and urea on methane production in an in vitro system and on growth performance and methane emissions in growing cattle, 70.
- Leng, R. A., Preston, T. R., & Inthapanya, S. (2012). Biochar reduces enteric methane and improves growth and feed conversion in local “Yellow” cattle fed cassava root chips and fresh cassava foliage. Livestock Research for Rural Development, 24(11).
- Stewart, K. J., Brummell, M. E., Farrell, R. E., & Siciliano, S. D. (2012). N2O flux from plant-soil systems in polar deserts switch between sources and sinks under different light conditions. Soil Biology and Biochemistry, 48, 69-77.
- Ciotoli, G., Etiope, G., Florindo, F., Marra, F., Ruggiero, L., & Sauer, P. E. (2013). Sudden deep gas eruption nearby Rome's airport of Fiumicino. Geophysical Research Letters, 40(21), 5632-5636.
- Etiope, G., Tsikouras, B., Kordella, S., Ifandi, E., Christodoulou, D., & Papatheodorou, G. (2013). Methane flux and origin in the Othrys ophiolite hyperalkaline springs, Greece. Chemical Geology, 347, 161-174.
- Brummell, M. E., Farrell, R. E., Hardy, S. P., & Siciliano, S. D. (2014). Greenhouse gas production and consumption in High Arctic deserts. Soil Biology and Biochemistry, 68, 158-165.
- Falk, J. M., Schmidt, N. M., & Ström, L. (2014). Effects of simulated increased grazing on carbon allocation patterns in a high arctic mire. Biogeochemistry, 119(1-3), 229-244.
- Falk, J. M. (2014). Plant-soil-herbivore interactions in a high Arctic wetland-Feedbacks to the carbon cycle. Lund University.
- Karu, H., Pensa, M., Rõõm, E. I., Portsmuth, A., & Triisberg, T. (2014). Carbon fluxes in forested bog margins along a human impact gradient: could vegetation structure be used as an indicator of peat carbon emissions?. Wetlands ecology and management, 22(4), 399-417.
- Rõõm, E. I., Nõges, P., Feldmann, T., Tuvikene, L., Kisand, A., Teearu, H., & Nõges, T. (2014). Years are not brothers: two-year comparison of greenhouse gas fluxes in large shallow Lake Võrtsjärv, Estonia. Journal of hydrology, 519, 1594-1606.
- Schiller, D. V., Marcé, R., Obrador, B., Gómez-Gener, L., Casas-Ruiz, J. P., Acuña, V., & Koschorreck, M. (2014). Carbon dioxide emissions from dry watercourses. Inland waters, 4(4), 377-382.
- Cremona, F., Kõiv, T., Nõges, P., Pall, P., Rõõm, E. I., Feldmann, T., ... & Nõges, T. (2014). Dynamic carbon budget of a large shallow lake assessed by a mass balance approach. Hydrobiologia, 731(1), 109-123.
- Machaca, M., Quispe, E. C., & Castro, A. (2015). Efecto de dos dietas fibrosas en la producción de metano en alpacas. Revista Investigaciones Altoandinas, 17(3), 441-444.
- Falk, J. M., Schmidt, N. M., Christensen, T. R., & Ström, L. (2015). Large herbivore grazing affects the vegetation structure and greenhouse gas balance in a high arctic mire. Environmental Research Letters, 10(4), 045001.
- Brummell, M. (2015). Greenhouse gas production and consumption in soils of the Canadian High Arctic (Doctoral dissertation, University of Saskatchewan).
- Karu, H. (2015). Development of ecosystems under human activity in the North-East Estonian industrial region: forests on post-mining sites and bogs.
- Etiope, G., & Ionescu, A. (2015). Low-temperature catalytic CO2 hydrogenation with geological quantities of ruthenium: a possible abiotic CH4 source in chromitite-rich serpentinized rocks. Geofluids, 15(3), 438-452.
- Ciotoli, G., et al. "Tiber delta CO2-CH4 degassing: A possible hybrid, tectonically active Sediment-Hosted Geothermal System near Rome." Journal of Geophysical Research: Solid Earth 121.1 (2016): 48-69.
- Powell, J. M., & Vadas, P. A. (2016). Gas emissions from dairy barnyards. Animal Production Science, 56(3), 355-361.
- Porsavatdy, P., Preston, T. R., & Leng, R. A. (2016). Effect on feed intake, digestibility, N retention and methane emissions in goats of supplementing foliages of cassava (Manihot esculenta Crantz) and Tithonia diversifolia with water spinach (Ipomoea aquatica). Livestock Research for Rural Development, 28(5).
- Lassen, J., & Løvendahl, P. (2016). Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods. Journal of Dairy Science, 99(3), 1959-1967.
- Nwaishi, F., Petrone, R. M., Macrae, M. L., Price, J. S., Strack, M., & Andersen, R. (2016). Preliminary assessment of greenhouse gas emissions from a constructed fen on post-mining landscape in the Athabasca oil sands region, Alberta, Canada. Ecological Engineering, 95, 119-128.
- Ionescu, A., Baciu, C., Kis, B. M., & Sauer, P. E. (2017). Evaluation of dissolved light hydrocarbons in different geological settings in Romania. Chemical Geology, 469, 230-245.
- Nguyễn-Thuỳ, D., Schimmelmann, A., Nguyễn-Văn, H., Drobniak, A., Lennon, J. T., T ạ, P. H., & Nguy ễn, N. T. Á. (2017). Subterranean microbial oxidation of atmospheric methane in cavernous tropical karst. Chemical Geology, 466, 229-238.
- Lesmeister, L., & Koschorreck, M. (2017). A closed-chamber method to measure greenhouse gas fluxes from dry aquatic sediments. Atmospheric Measurement Techniques, 10(6), 2377.
- Holly, M. A., & Larson, R. A. (2017). Effects of manure storage additives on manure composition and greenhouse gas and ammonia emissions. Transactions of the ASABE, 60(2), 449-456.
- Drewry, J. L., Powell, J. M., & Choi, C. Y. (2017). Design and calibration of chambers for the measurement of housed dairy cow gaseous emissions. Transactions of the ASABE, 60(4), 1291-1300.
- Haque, M. N., Hansen, H. H., Storm, I. M., & Madsen, J. (2017). Comparative methane estimation from cattle based on total CO2 production using different techniques. Animal Nutrition, 3(2), 175-179.
- Porsavathdy, P., Do, H. Q., & Preston, T. R. (2017). Growth rate and feed conversion were improved, and emissions of methane reduced, when goats fed a basal diet of pigeon wood foliage (Trema orientalis) were supplemented with sun-dried cassava foliage (Manihot esculenta, Crantz) or water spinach (Ipomoea aquatica). Livestock Research for Rural Development. Volume 29, Article, 68.
- Pszczola, M., Rzewuska, K., Mucha, S., & Strabel, T. (2017). Heritability of methane emissions from dairy cows over a lactation measured on commercial farms. Journal of animal science, 95(11), 4813-4819.
- Hu, E., Sutitarnnontr, P., Tuller, M., & Jones, S. B. (2018). Modeling temperature and moisture dependent emissions of carbon dioxide and methane from drying dairy cow manure. Frontiers of Agricultural Science and Engineering, (2), 13.
- Wu, L., Koerkamp, P. W. G., & Ogink, N. (2018). Uncertainty assessment of the breath methane concentration method to determine methane production of dairy cows. Journal of dairy science, 101(2), 1554-1564
- Pszczola, M., Strabel, T., Mucha, S., & Sell-Kubiak, E. (2018). Genome-wide association identifies methane production level relation to genetic control of digestive tract development in dairy cows. Scientific reports, 8(1), 1-11.
- Kandel, T. P., Gowda, P. H., Somenahally, A., Northup, B. K., DuPont, J., & Rocateli, A. C. (2018). Nitrous oxide emissions as influenced by legume cover crops and nitrogen fertilization. Nutrient Cycling in Agroecosystems, 112(1), 119-131.
- Baciu, C., Ionescu, A., & Etiope, G. (2018). Hydrocarbon seeps in Romania: gas origin and release to the atmosphere. Marine and Petroleum Geology, 89, 130-143.
- Duval, B. D., Cadol, D., Martin, J., & Timmons, S. (2018). Persistent Effects of the Gold King Mine Spill on Biota: Animas and San Juan Rivers, Northern New Mexico.
- Marques, J. M., Etiope, G., Neves, M. O., Carreira, P. M., Rocha, C., Vance, S. D., & Suzuki, S. (2018). Linking serpentinization, hyperalkaline mineral waters and abiotic methane production in continental peridotites: an integrated hydrogeological-bio-geochemical model from the Cabeço de Vide CH4-rich aquifer (Portugal). Applied Geochemistry, 96, 287-301.
- Webster, K. D., Drobniak, A., Etiope, G., Mastalerz, M., Sauer, P. E., & Schimmelmann, A. (2018). Subterranean karst environments as a global sink for atmospheric methane. Earth and Planetary Science Letters, 485, 9-18.
- Webster, K. D., Schimmelmann, A., Drobniak, A., Mastalerz, M., Lagarde, L. R., Boston, P. J., & Lennon, J. T. (2018). Diversity and composition of cave methanotrophic communities. bioRxiv, 412213.
- Korkiakoski, M., Tuovinen, J. P., Penttilä, T., Sarkkola, S., Ojanen, P., Minkkinen, K., ... & Lohila, A. (2019). Greenhouse gas and energy fluxes in a boreal peatland forest after clear-cutting.
- Vadas, P. A., & Powell, J. M. (2019). Nutrient Mass Balance and Fate in Dairy Cattle Lots with Different Surface Materials. Transactions of the ASABE, 62(1), 131-138.
- Girard, M., Duchaine, C., Godbout, S., Lévesque, A., Létourneau, V., & Lemay, S. P. (2019). Réduire l'exposition des travailleurs aux gaz, odeurs, poussières et agents pathogènes humains présents dans les bâtiments porcins.
- Danielsson, R., Lucas, J., Dahlberg, J., Ramin, M., Agenäs, S., Bayat, A. R., ... & Roslin, T. (2019). Compound-and context-dependent effects of antibiotics on greenhouse gas emissions from livestock. Royal Society Open Science, 6(10), 182049.
- Aruquipa, J. E. R., Colque, E. E. Q., Suca, J. G. M., Machaca, R. S., & Huanca, B. R. (2019). Effecto del procesamiento forrahero en la respuesta animal y la producción de metano en llamas y alpacas. Revista de Investigaciones de la Escuela de Posgrado de la UNA PUNO, 8(4), 1350-1357.
- Phuong, L. T. B., Preston, T. R., Van, N. H., & Dung, D. V. (2019). Effect of additives (brewer’s grains and biochar) and cassava variety (sweet versus bitter) on nitrogen retention, thiocyanate excretion and methane production by Bach Thao goats. Livestock Research for Rural Development, 31.
- McDonald, M. D., Lewis, K. L., Ritchie, G. L., DeLaune, P. B., Casey, K. D., & Slaughter, L. C. (2019).Carbon dioxide mitigation potential of conservation agriculture in a semi-arid agriculturalregion. AIMS Agriculture and Food, 4(1), 206.
- Singh, H., Kandel, T. P., Gowda, P. H., Somenahally, A., Northup, B. K., & Kakani, V. G. (2019). Influence of Contrasting Soil Moisture Conditions on Carbon Dioxide and Nitrous Oxide Emissions from Terminated Green Manures. Agrosystems, Geosciences & Environment, 2(1).
- Teutscherova, N., Vazquez, E., Arango, J., Arevalo, A., Benito, M., & Pulleman, M. (2019). Native arbuscular mycorrhizal fungi increase the abundance of ammonia-oxidizing bacteria, but suppress nitrous oxide emissions shortly after urea application. Geoderma, 338, 493-501.
- Shrestha, D., Wendroth, O., & Jacobsen, K. L. (2019). Nitrogen loss and greenhouse gas flux across an intensification gradient in diversified vegetable rotations. Nutrient Cycling in Agroecosystems, 114(3),193-210.
- Difford, G. F., Løvendahl, P., Veerkamp, R. F., Bovenhuis, H., Visker, M. H. P. W., Lassen, J., & de Haas, Y. (2020). Can greenhouse gases in breath be used to genetically improve feed efficiency of dairy cows?. Journal of Dairy Science.
- Aruquipa, J. E. R. (2020). Efecto del tamaño de partícula del forraje en el consume, ganancia de peso y produccíon de metano en llamas y alpacas. Revista de Investigaciones (Puno)-Escuela de Posgrado de la UNA PUNO, 8(4), 1350-1357.
- Duval, B. D., Curtsinger, H. D., Hands, A., Martin, J., McLaren, J. R., & Cadol, D. D. (2020). Greenhouse gas emissions and extracellular enzyme activity variability during decomposition of native versus invasive riparian tree litter. Plant Ecology, 1-13.
- Bell, J. K., Siciliano, S. D., & Lamb, E. G. (2020). A survey of invasive plants on grassland soil microbial communities and ecosystem services. Scientific Data, 7(1), 1-8.
- Kandel, T. P., Gowda, P. H., & Northup, B. K. (2020). Influence of Tillage Systems, and Forms and Rates of Nitrogen Fertilizers on CO2 and N2O Fluxes from Winter Wheat Cultivation in Oklahoma. Agronomy, 10(3), 320.
- Hartmann A. Greenhouse gas emissions from compacted peat soil[J]. 2021.
- Nordgren L. Odlade torvjordar och växthusavgång[J]. 2021.
- Elpelt-Wessel I, Reiser M, Morrison D, et al. Emission determination by three remote sensing methods in two release trials[J]. Atmosphere, 2021, 13(1): 53.
- San Martin Ruiz M, Reiser M, Kranert M. Nitrous oxide emission fluxes in coffee plantations during fertilization: A case study in Costa Rica[J]. Atmosphere, 2021, 12(12): 1656.
- Kim Y N, Cho Y S, Lee J H, et al. Short-Term Responses of Soil Organic Carbon Pool and Crop Performance to Different Fertilizer Applications. Agronomy 2022, 12, 1106[EB/OL].(2022)
- Kim N, Jang C, Yang W H, et al. Spatial Variability of Agricultural Soil Co2 and N2o Fluxes: Characterization and Recommendations from Spatially High-Resolution, Multi-Year Dataset[J]. Multi-Year Dataset.
- Kim Y N, Lee J H, Seo H R, et al. Co-Responses of Soil Organic Carbon Pool and Biogeochemistry to Different Long-Term Fertilization Practices in Paddy Fields[J]. Plants, 2022, 11(23): 3195.
- Soreanu G, Cretescu I, Dragoi E N, et al. TOWARDS LOW-CARBON EMISSION BIOTRICKLING FILTRATION OF VOLATILE ORGANIC COMPOUNDS FROM AIR: AN ARTIFICIAL NEURAL NETWORK APPROACH[J]. International Multidisciplinary Scientific GeoConference: SGEM, 2022, 22(4.1): 429-436.
- Soreanu G, Cretescu I, Lutic D, et al. Study of microalgae influence on carbon capture from gaseous streams within the biotrickling filtration process[J]. International Multidisciplinary Scientific GeoConference: SGEM, 2022, 22(4.1): 391-398.
- Ramil Brick E S, Holland J, Anagnostou D E, et al. A review of agroforestry, precision agriculture, and precision livestock farming—The case for a data-driven agroforestry strategy[J]. Frontiers in Sensors, 2022, 3: 998928.
- Sieranen M. Nitrous oxide emissions at three Finnish wastewater treatment plants–Mechanisms behind nitrous oxide emissions and potential of process modelling in emission quantification[J]. 2023.
- El Asri O. Mitigation of ammonia and methane emissions in pre-treatment of fertilizer recovery process[D]. , 2023.
- Tabase R K, Næss G, Larring Y. Ammonia and methane emissions from small herd cattle buildings in a cold climate[J]. Science of the Total Environment, 2023, 903: 166046.
- Berglund Ö, Berglund K, Jordan S. Vallodling på torvjord–skördenivåer och växthusgasavgång[J]. Report from the Department of Crop Production Ecology (VPE), 2023 (34).
- Trochon B. Etude de l'hydrologie des sols argilo-calcaires pour la spatialisation de l'engorgement, des fentes de retrait et des flux d'azote dans l'atmosphère[D]. Institut National Polytechnique de Toulouse-INPT, 2023.
- Jeong H C, Lee J M, Gwon H S, et al. Effect of Applying Rice Hull Biochar on the Yield of Chinese Cabbage and Greenhouse Gas Emissions in Cropland[C]//Proceedings of the Korean Society of Crop Science Conference. The Korean Society of Crop Science, 2023: 59-59.
- Maciel C. Impact of Farming Practices on Soil Greenhouse gas Emissions[D]. San Francisco State University, 2023.
- Larsson J. Val av odlingssystem–effekt på markstruktur, växthusgasemissioner och avkastning[J].
- Hashemi J, Lipson D A, Arndt K A, et al. Thermokarst landscape exhibits large nitrous oxide emissions in Alaska’s coastal polygonal tundra[J]. Communications Earth & Environment, 2024, 5(1): 473.
- Laslo L, Enache N, Matei M, et al. Experiments on Soil Microcosms for The Assessment of Greenhouse Gases Fluxes from Different Land Uses in Laboratory Conditions[C]//E3S Web of Conferences. EDP Sciences, 2024, 589: 01005.
- Park D G, Jeong H C, Jang E B, et al. Effect of rice hull biochar treatment on net ecosystem carbon budget and greenhouse gas emissions in Chinese cabbage cultivation on infertile soil[J]. Applied Biological Chemistry, 2024, 67(1): 44.
- Li S, Norman A L, Lett M, et al. CCUS in Agriculture: Accessing Emission Reduction of Greenhouse Gases by an Innovative Method of Converting Exhaust Gases From Farm Machinery Into Bio-AgtiveTM Carbon Water Applied on Farmland to Increase Photosynthesis for Soil Carbon Sequestration[J]. Available at SSRN 5069952, 2024.
- Kim N, Jang C, Yang W H, et al. Spatial variability of agricultural soil carbon dioxide and nitrous oxide fluxes: characterization and recommendations from spatially high-resolution, multi-year dataset[J]. bioRxiv, 2024: 2024.08. 02.606447.
- Khan T F, Rabbani M M. Microplastic Impacts on Greenhouse Gases Emissions in Terrestrial Ecosystems[J]. Open Journal of Soil Science, 2024, 14(01): 64-80.
- Otterlin Karlsson F. Greenhouse gas emissions from peat soil thawing in spring[J]. 2024.
- Tabase R K, Næss G, Larring Y. Effect of cubicle hood system on methane concentrations around the lying area in cold climate dairy cattle buildings[J]. Environmental Advances, 2024, 15: 100504.
- Sieranen M, Hilander H, Haimi H, et al. Seasonality of nitrous oxide emissions at six full-scale wastewater treatment plants[J]. Water Science & Technology, 2024, 89(3): 603-612.
- Wenzel C, Flamm B, Loop T, et al. Efficiency of passive activated carbon anaesthetic gas capturing systems during simulated ventilation[J]. British Journal of Anaesthesia, 2024, 133(6): 1518-1524.
产地与厂家:芬兰Gasmet