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A B S T R A C T   

This study aims to detect peanut flour adulteration in chocolate powder using near-infrared (NIR) hyperspectral 
imaging. Fifteen samples were prepared by mixing both food products in different proportions (0%, 0.1%, 1%, 
10% and 100% of peanut) and measured using the hyperspectral camera. A preliminary Principal Component 
Analysis (PCA) was performed to investigate the structure of the data. Next, the Multivariate Curve Resolution - 
Alternating Least Squares (MCR-ALS) chemometric method combined with a selectivity constraint in the con-
centration matrix was applied to untangle the spectral data into a set of components representative of the main 
constituents found in the samples. Moreover, a detection algorithm based on the calculation of the Mahalanobis 
distance for every pixel to the model distribution of chocolate powder was implemented. This analysis revealed 
the complexity of the unmixing problem, allegedly due to the spectral signature overlap in the pixel field of view 
and because the pure products presented similar spectral signatures. MCR-ALS results were improved after the 
application of a selectivity constraint, which resulted in a higher performance of the detection algorithm. MCR- 
ALS detected from 0% to 2.2% of adulterated pixels in mixed samples. On the other hand, the selectivity- 
constrained MCR-ALS method provided detections from 0.03% to 17.0% in those samples. This pipeline 
showed that peanut adulteration can be detected even for the lowest concentration level tested (0.1% of peanut). 
This work highlights the potential of NIR hyperspectral imaging combined with chemometrics for detection 
purposes.   

1. Introduction 

In the industry, there is a high interest in detecting contaminations in 
powders (Fitzpatrick & Ahrn�e, 2005). Food industry concerns about 
cross-contamination of ingredients are increasing due to the increasing 
prevalence of food allergies. On the one hand, for some people, allergic 
reactions can be triggered with just a few milligrams of pure allergen 
(Moneret-Vautrin & Kanny, 2004). On the other hand, a significant 4% 
of the total world population suffers from a form of food allergy (van 
Hengel, 2007). 

Due to the existence of major food allergens such as peanuts (Hefle & 

Taylor, 2004), food handling in the industry can be especially chal-
lenging (Chang, Sreedharan, & Schneider, 2013). In addition, processing 
methods that focus on powder foods (i.e., producing a dry mix) can 
increase the risk of food cross-contamination due to the difficulty in 
cleaning the equipment between two lines of food products in progress 
(Hefle & Taylor, 2004) and because it is difficult to assess whether all 
contaminants have been removed after the cleaning phase (van Hengel, 
2007). However, several strategies exist to detect product contamina-
tion. Most detection strategies consist of direct methods that search for 
specific target molecules (i.e., proteins, DNA) from the adulter-
ant/contaminant, i.e. allergen, using molecular biology and 
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immunological methods. For example, the immunological method 
ELISA detects proteins with a very low sensitivity (from 1 to 2.5 ppm) 
(Hefle & Taylor, 2004). However, ELISA is a destructive method 
employed on small sample volumes, which might not be representative 
enough of the whole sample. Additionally, immunological or molecular 
biology methods are not optimal for automatic screening because they 
are expensive and time-consuming. 

Alternatively, the rise of the fingerprinting methods has led to the 
advent of indirect detection strategies. Near-infrared (NIR) spectroscopy 
method has a particularly high potential for food safety applications 
(Lohumi, Lee, Lee, & Cho, 2015). NIR enables the fast screening of 
organic matter, without preparing nor altering the sample. In recent 
years, hyperspectral imaging has been developed for food safety in-
dustrial applications (Gowen, O’Donnell, Cullen, Downey, & Frias, 
2007). This technique combines spectroscopy and imaging techniques, 
enabling the acquisition of hyperspectral images. These images are 
composed of reflectance pixelmaps containing hundreds of channels, 
one per wavelength. This measurement technique makes possible to 
obtain local NIR measurements for each pixel of the hyperspectral 
image, allowing the observation of the chemical heterogeneity of the 
samples. Therefore, hyperspectral imaging should be regarded as a 
promising solution for detecting food contamination in powders. 

Some examples of product contamination detection using spectros-
copy methods can be found in the literature. For instance, the detection 
of melamine in milk powder was investigated using line scan NIR 
hyperspectral imaging (Fern�andez Pierna et al., 2014) (Fu et al., 2014) 
(Y. Huang, Tian, Min, Xiong, & Du, 2015) (M. Huang et al., 2016). The 
detection of crushed peanut in wheat flour was performed by applying 
Independent Component Analysis (ICA) (Mishra et al., 2016) and Prin-
cipal Component Analysis (PCA) (Mishra, Herrero-Langreo, Barreiro, & 
Roger, 2015) to the hyperspectral data. In the pharmaceutical domain, 
the amount of low dose of magnesium stearate was analyzed using 
Multivariate Curve Resolution (MCR) and Raman hyperspectral imaging 
(Boiret, de Juan, Gorretta, Ginot, & Roger, 2015). 

Although hyperspectral imaging can provide spectral measurements 
of a small sample area, the field of view of one pixel is large compared to 
the particle size of powders. Generally, the pixel size of a NIR hyper-
spectral imaging system is about 200 μm by 200 μm (Geladi, Burger, & 
Lestander, 2004) whereas the particle size of some powders, such as 
flours, may be even smaller than 100 μm (Joint FAO/WHO Codex Ali-
mentarius Commission, 1995). As a consequence, the spectral profile 
measured in a pixel is not representative of one particle but of several 
ones. Thus, if these particles correspond to different chemicals, the 
resulting spectrum will be a mixture of the spectral features of the pure 
chemicals involved. Thus, in the analysis of hyperspectral images for 
particle detection, the spectrum of each pixel is considered to include a 
potential mixture of compounds. This is known as the subpixel detecting 
problem (Bioucas-Dias et al., 2012). 

Various chemometric methods (i.e., ICA (Mishra et al. (2016)), MCR 
(Boiret et al. (2015)), Non-Negative Least Squares (NNLS) (Lancelot, 
Bertrand, Hanafi, & Jaillais, 2017)) have been used to address this 
subpixel detecting problem. All these methods showed 
high-performance results to unmix hyperspectral images, although the 
data analysis may become challenging when the particles to detect (from 
the contaminant) have a spectral signature very close to the background 
particles (belonging to food sample). 

When dealing with food contamination, there is no guarantee the 
spectral features of the contaminant differs from that of the background. 
For example, this is the case for melamine contamination in milk powder 
(Fern�andez Pierna et al., 2014). In the same line, the peanut NIR spectral 
signature is very similar to cocoa especially when the products are 
transformed into flour or chocolate powder. These two food compounds 
are involved in potential allergen contamination cases in the food in-
dustry. In agreement with this, a study of the French market showed that 
67% of snacking products labels advised of the possible unwanted 
presence of peanuts in their product (INRA & ANSES, 2015). Thus, 

assuring the absence of peanut traces in chocolate products is a matter of 
utmost importance for the food industry. 

In this study, we propose to tackle the problem of detecting peanut 
flour particles in chocolate powder using both the NIR hyperspectral 
imaging technique and chemometrics methods. First, a PCA was per-
formed as a reference technique and then a detection algorithm based on 
the MCR-ALS chemometric method was applied. This work provides 
novel insights into the spectral features of the chocolate-peanut system 
and presents a methodology to address subpixel detection using hyper-
spectral imaging with the potential to be implemented in food pro-
cessing industries. To our knowledge, the study of the detection of food 
allergens by combining NIR hyperspectral imaging and chemometrics is 
not common in the literature. 

2. Material and methods 

2.1. Sample preparation 

A chocolate powder mix to prepare milk beverages was purchased in 
a French supermarket. The main ingredients of the mixture are sucrose, 
cocoa, dextrose, and soya lecithin. Defatted peanut flour was bought on 
the German market. The powders were mixed in different mass pro-
portions of peanut flour: 10%, 1%, and 0.1%. For each concentration, 
three replicate samples of 13 g were prepared. In addition, pure choc-
olate powder and pure peanut flour samples were also prepared in 
triplicate, leading to a total of 15 samples. For the spectral measure-
ments, the powders were put in a plastic sample holder made of poly-
lactic acid. The powder was skimmed on the top to achieve a thickness of 
7 mm. This thickness ensured that the bottom of the sample holder did 
not have an influence on the near-infrared reflectance signal measured 
by the hyperspectral system (Laborde et al., 2019). 

2.2. Hyperspectral imaging system 

A line-scan pushbroom Specim SWIR camera (Specim, Spectral Im-
aging Ltd, Oulu, Finland) was used to acquire the hyperspectral images. 
The system acquires 288 spectral bands from 1000 to 2500 nm with a 
spectral sampling of 5.6 nm. The spectral range 1000–2500 nm was 
chosen as it proved its superior capability to analyze the chemical 
content of peanut compared to the range 400–1000 nm (Jin, Ma, Li, & 
Cheng, 2016). Additionally, it was successfully used for the measure-
ment of sugar in a similar chocolate powder (da Costa Filho, 2009). The 
camera was moving along the y-axis and acquired 320 pixels per line to 
form the hyperspectral cube. Six halogen lamps were used to illuminate 
the sample. A white diffuse reflectance standard in Teflon was used to 
acquire the white reference image before each measurement. The dark 
reference image was acquired by closing the shutter of the camera. 

2.3. Data preprocessing 

Hyperspectral cubes were cropped in the spatial dimension to obtain 
the same image size for each sample. Each image was composed of 61 �
61 pixels, which corresponded to a field of view of 1.5 cm � 1.5 cm. The 
white reference image (I0) was averaged to obtain one reference spec-
trum for each pixel of the sensor line. The reflectance cube was calcu-
lated using (Eq. (1)) and the dark measurement (IB). 

R¼  I � IB

I0 �  IB
; (1) 

Wavelengths from 1000 nm to 1100 nm and from 2400 nm to 2500 
nm were removed because they were mainly representative of electronic 
noise. The remaining spectra were smoothed using a Savitsky-Golay 
filter (second order polynomial, 7-point window, and with no deriva-
tive) and preprocessed with a logarithmic transformation (- log10). 
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2.4. Hyperspectral cube unfolding 

Hyperspectral images can be regarded as tridimensional hyper-
spectral cubes, where the x and y planes correspond to the spatial di-
mensions and the z plane contains the hyperspectral data for every pixel 
(left side in Fig. 1). This cube can be unfolded into a two-dimensional 
matrix, with as many rows as pixels and as many columns as 
measured wavelengths (right side in Fig. 1). Every row in this matrix 
contains the spectrum relative to one pixel. This data unfolding strategy 
is required to investigate tridimensional data with bilinear methods such 
as MCR-ALS (Olmos et al., 2017). 

2.5. Multivariate Curve Resolution - Alternating Least Squares 

Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) 
is a chemometric method used to solve the unmixing problem (de Juan, 
2020). According to MCR-ALS (de Juan, Jaumot, & Tauler, 2014a), 
(Tauler & Kowalski, 1993), a matrix D containing mixed signal mea-
surements can be decomposed as the product of the pure spectral pro-
files, S, associated with their pure concentration contributions, C, using 
the following bilinear model (Eq. (2)): 

D¼CST þ E; (2)  

where D is a n by q matrix containing the spectral data in rows; C is a n by 
k matrix containing the concentration coefficients for each pixel in rows; 
ST is a k by q matrix containing the pure spectral profiles in rows; E is a n 
by q matrix containing the residual information not explained by the 
model. 

In this decomposition, the number of pure profiles to be resolved is 
determined by the number of components, which needs to be estimated 
before running the analysis. The number of components can be esti-
mated using the Singular Value Decomposition (SVD) algorithm (Golub 
& Reinsch, 1970). 

MCR-ALS algorithm is an iterative method that optimizes a set of 
initial estimates for the concentration (C) or the spectrum profiles (S) 
under constraints while minimizing the residual part E. 

In this study, the initial estimates used were the most dissimilar 
spectra found in the hyperspectral images of the pure samples of peanut 
flour and chocolate powder. One spectrum was selected for peanut flour, 
while two spectra were chosen for chocolate powder due to its higher 
complexity. Hence, during the MCR-ALS analysis of the mixture sam-
ples, three components were used. 

Concentration and spectral profiles obtained by the application of 
the bilinear model of Eq. (2) may not be the correct ones due to the 
existence of rotational ambiguities (de Juan, Jaumot, & Tauler, 2014b). 

The bilinear model of Eq. (2) allows that several sets of concentration 
profiles and spectra with different shapes can reproduce the data D with 
the same precision (de Juan et al., 2014b). In other words, the optimi-
zation problem is under-constrained which leads to a great deal of 
possible solutions. To drive the iterative analysis towards the purest 
solution, some known information from the system of study can be used 
as constraints. Examples of constraints include non-negativity and 
selectivity constraints. The non-negativity constraint can be applied 
when the resolved spectral data must be positive. The selectivity 
constraint is used to fix some values in the S or C matrices. Finally, the 
spectral profiles can also be normalized to reduce the intensity ambi-
guity of the solutions (Lawton & Sylvestre, 1971). This ambiguity is 
caused by the fact that the intensity of spectra can be reproduced by 
multiple dyads of profiles and concentration with different arbitrary 
scales (de Juan et al., 2014a). 

2.5.1. Augmented matrix 
The MCR-ALS algorithm can be used to analyze several samples 

simultaneously. In fact, by analyzing more than one sample at once, 
more information relative to the pure components is introduced in the 
analysis and the possible ambiguities can be substantially reduced. In 
this work, MCR-ALS was applied to the column-wise augmented data 
matrix resulting from stacking the 15 unfolded hyperspectral image 
samples, X. This matrix has 55,815 rows and 248 columns (Fig. 2). 

2.5.2. Selectivity constraint in the concentration matrix 
As stated in section 2.5, an additional constraint can be applied to 

introduce known information in the MCR-ALS analysis and reduce the 
ambiguity of the final solution. In the case of the MCR-ALS multiset 
analysis, the correspondence among constituents and MCR-ALS com-
ponents allows the introduction of information about the presence or the 
absence of these constituents in the pixels. In the situation depicted in 
section 2.1, the composition of the pixels of the pure samples is known, 
while the composition of every pixel in the mixed powder image is not 
and therefore it could not be inferred. The correspondence among spe-
cies, i.e. the selectivity constraint in the C matrix (abbreviated as 
“CSEL”) was implemented to constrain only the pure sample images. 

With this constraint, components representative of chocolate powder 
(components 1 and 2) were imposed to not show contribution in pure 
peanut pixels. Analogously, the component representative of peanut 
flour (component 3) was imposed to not show contribution in chocolate 
powder pixels. 

In this study, we tested and compared both MCR-ALS resolution 
methods with and without a selectivity constraint. For simplicity, in this 
paper, these methods will be referred to as MCR-ALS and MCR-ALS- 
CSEL, respectively. 

Fig. 1. Hyperspectral cube unfolding. After the unfolding, the hyperspectral cube is transformed into a two-dimensional matrix.  
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2.6. Detection algorithm 

After decomposing the signal of the pixels by MCR-ALS, the resulting 
C matrix was investigated with a detection algorithm to determine the 
presence or absence of peanut. In this detection algorithm, the C matrix 
was used to build a Gaussian Mixture Model (GMM) (Yang & Ahuja, 
1998) on the pure chocolate powder pixels. The GMM consisted of 
modeling the distribution of points in the 3-dimensional sub-space 
defined by the 3 MCR-ALS components using several 3D Gaussian dis-
tributions. In this study, 2 Gaussians were fitted using the 
Expectation-Maximization (EM) algorithm (Yang & Ahuja, 1998) to 
model the distribution of chocolate powder pixels. The Mahalanobis 

distances between each pixel (represented each with the 3 concentration 
profiles from the C matrix) and both Gaussians were then computed to 
obtain the score for detection. The threshold for detection was chosen as 
the highest Mahalanobis distance measured between the GMM and a 
pixel from the pure chocolate powder samples. 

2.7. Software 

Data processing were performed in Matlab R2016a (MathWorks Inc.) 
using the SAISIR toolbox (Cordella & Bertrand, 2014). Processed sam-
ples were analyzed with the MCR-ALS method using the MCR-ALS GUI 
2.0 under Matlab environment (Jaumot, de Juan, & Tauler, 2015). 

Fig. 2. The hyperspectral cubes (one per sample) are horizontally stacked as an augmented cube, which is unfolded afterwards.  

Fig. 3. PCA score plots. The left graph (A) shows the projection of all the pixels on the two first principal components. The black arrow points to the pixels from 
mixture samples that lie between the chocolate powder and the peanut flour variabilities. The right graph (B) shows the projection of all the pixels on the first and the 
third principal components. 
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3. Results and discussion 

3.1. Principal Component Analysis 

A PCA was first applied to the X augmented matrix containing the 
hyperspectral data from the pixels of all the sample images. The PCA 
score plot on the first two PCs is given in Fig. 3. In this figure, the scores 
from the pure peanut flour pixels are clearly separated from those from 
the pure chocolate powder pixels. Regarding the scores from the mixture 
samples, they were found clustered around the distribution of pure 
chocolate pixels scores. 

PC1 (81.2% of the total explained variance of the dataset) mainly 

describes the variability among pixels within the same sample type, 
while PC2 (13.9% of the explained variance) allows the discrimination 
of the pure chocolate pixels cluster from the pure peanut pixel cluster. 
PC3 (2.6% of the explained variance) does not show any separation of 
the pixels between the pure peanut and the pure chocolate. The same 
observations were made on the following principal components (results 
not shown). 

The results from this PCA illustrate the so-called “subpixel detection 
problem” (Bioucas-Dias et al., 2012), since the scores distribution shows 
that no pixel from the mixture samples is of “pure peanut” as they do not 
fall into the area of the pure peanut cluster. However, a few scores from 
the mixture pixels were found between the pure chocolate and the pure 

Fig. 4. Scatter plots of the resolved MCR-ALS C concentration profiles. The four subplots show the concentration profiles of each pixel of the dataset for the two 
methods. (A) and (B) show the results for the MCR-ALS method. (C) and (D) show the results for the MCR-ALS-CSEL method. The ellipses represent the 99% 
confidence boundaries from the GMM used for the detection method. 
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peanut variability distributions (see the black arrow in Fig. 3A). These 
scores represent the pixels from the mixture samples containing, in 
addition to the spectral signatures from chocolate, the most important 
spectral contribution from peanut. Nevertheless, these intermediate 
scores were not observed for pixels from samples containing 1% of 
peanut, proving that PCA cannot detect peanut adulteration at this 
concentration level. Therefore, PCA is not an optimal tool to detect 
peanut pixels in chocolate matrices. We can argue that PCA limitation is 
derived from the fact that spectral differences linked to the adulteration 
do not dominate the dataset, since these spectral differences are very 
small and only occur in a small fraction of the total number of pixels. 
PCA also imposes the components to be orthogonal to each other. 
However, this constraint is not representative of the real chemical sig-
natures. Hence, the principal components calculated by PCA do not 
reflect the true chemical signatures of the mixture problem (de Juan 
et al., 2014a). 

3.2. MCR-ALS 

Since PCA could not extract the spectral components in the pixels 
relative to peanut flour and chocolate powder, MCR-ALS method was 
applied instead. Fig. 4 shows the C concentration profiles for the three 
MCR-ALS resolved components, which are representative of the pixels. 
Thus, MCR-ALS results shown in Fig. 4 can be directly compared to the 
PCA scores shown in Fig. 3. For instance, in Fig. 4, the pure pixels from 
peanut and chocolate can be discriminated using the third component 
(c3) only. On the other hand, two principal components were needed to 
discriminate the pure samples on the PCA score plot (Fig. 3), demon-
strating that MCR-ALS components are much more easily interpretable 
than the PCA components. The better outcome found for MCR-ALS is 
mainly derived from the use of the non-negativity constraint that 

reduced the ambiguity of the data decomposition. Since negative con-
centrations were not allowed in the resolution of the MCR-ALS model, 
the spectral components could not compensate for each other. As a 
result, the spectral shapes of the MCR-ALS components were closer to 
the pure chemical compounds (Fig. 5). 

Consequently, some pixels from the samples containing 10% peanut 
were found within the pure peanut variability whereas this was not 
observed in the PCA, which illustrates that MCR-ALS provided a more 
suitable model for the detection problem of peanut in chocolate powder 
than the PCA. 

Fig. 5 shows the resolved MCR-ALS spectral profiles in blue 
compared to their initial estimates in black. 

The first spectral profile (s1, Fig. 5A) is descriptive of cocoa as it 
includes some spectral features characteristics from this constituent as 
reported elsewhere: the low intensity and spread absorption peak at 
1208 nm is due to the combination of the second overtone of CH, CH2, 
and CH3; a higher intensity level absorption can be observed at 1491 nm 
corresponding to the N–H group characteristic of the proteins in cocoa 
(Kr€ahmer et al., 2015); the absorption at 1935 nm is attributed to the 
second overtone of amide C––O (Workman Jr. & Weyer, 2012) which is 
also descriptive of proteins in cocoa. 

The second spectral profile (s2, Fig. 5B) is descriptive of the sucrose 
content present in the chocolate powder. The intense absorption peaks 
at 1435 nm and 2072 nm in s2 are associated with the C–H stretching 
and the combination of O–H stretching in sucrose, respectively (da Costa 
Filho, 2009). Additionally, a double peak at 2280 nm was attributed to 
the C–H stretching and CH2 deformation of polysaccharides (Workman 
Jr. & Weyer, 2012). 

The third component is associated with the peanut spectral signa-
ture. The peaks at 1474 nm and 1735 nm are related to the N–H second 
overtone from proteins and to C–H group of amine polysaccharides 

Fig. 5. MCR-ALS optimization of the spectral profiles. The three subplots show the three MCR-ALS components. For each plot, the initial estimate of the component is 
depicted in black. The resulting spectral profiles obtained by MCR-ALS are given in blue, while the corresponding profiles obtained by MCR-ALS-CSEL are given in 
red. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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respectively (Workman Jr. & Weyer, 2012). The two main absorption 
peaks at 1200 nm and 1942 nm are representative of the water ab-
sorption contained in the flour. Since the peanuts were defatted before 
being milled into flour, the fatty acids of peanut were not present in the 
final product. As a consequence, the near-infrared spectrum of peanut 
was mainly characterized by its proteins, causing the detection problem 
to become more difficult as there were fewer spectral signatures char-
acteristic of peanut to be detected in the mixture samples. 

Differences between the initial estimates and the final resolved MCR- 
ALS spectral profiles varied across components. On the one hand, s2 and 
s3 did not change significantly after the MCR-ALS iterative process. This 
occurred because the pixels chosen as initial estimates were mainly 
constitutive of the compounds they describe (sucrose and peanut flour, 
respectively). However, s1 showed a more prominent alteration of the 
spectral profile after the iterative process is performed, allegedly 
because all pixels from cocoa samples contain sucrose and therefore an 
initial estimate from cocoa without sucrose could not be used. Never-
theless, even without the proper initial estimate for s1, MCR-ALS 
reached a satisfactory resolution after the iterative process. This result 
highlights that the MCR-ALS method is robust enough to extract the pure 
spectral components of chocolate powder. 

The coefficient of correlation between s1 and s3 is high (r2 ¼ 0.96), 
indicating that these spectral profiles of cocoa (without sucrose) and 
peanut flour are very similar in spectral shape. As a consequence, the 
obtained MCR-ALS solutions may not be the purest ones due to ambi-
guities between the two spectra. In fact, this ambiguity could explain 
why some coefficients c1 for the pure peanut pixels were not null 
(Fig. 4). For this reason, the C concentration profiles must be read with 
caution and therefore they should not be used directly for detection 
purposes. 

3.3. MCR-ALS-CSEL 

After noticing some spectral ambiguities in the MCR-ALS model 
performed in the previous section, the MCR-ALS analysis was repeated 
using CSEL as an additional constraint (see Methods). With CSEL, the 
value of the C concentration profiles can be imposed for certain known 
pixels, resulting in a reduction of the ambiguity of the system of study. In 
this work, we imposed that pure peanut pixels only contain spectral 
signatures from s3, while pure cocoa pixels only contain spectral sig-
natures from s1 and s2. 

Table 1 shows the fitting performances of MCR-ALS and MCR-ALS- 
CSEL. Both methods exhibit high performances with R2 > 0.99. The 
addition of constraint to the MCR-ALS algorithm leads to consider a 
tradeoff between the fitting of the data matrix D and the satisfaction of 
the constraints. Table 1 shows that despite the addition of constraints in 
the MCR-ALS-CSEL method, the fitting performances are still similar to 
the MCR-ALS. This indicates that the optimal solution was reached 
regardless the MCR-ALS method was more constrained. The effect of 
CSEL can be observed in Fig. 5. In this figure, the spectral profiles 
resolved with MCR-ALS-CSEL are shown in red, while those resolved 
with MCR-ALS are shown in blue. Interestingly, some spectral differ-
ences can be observed for s1 and s3 spectral profiles. On the other hand, 
s2 spectral profile remains exactly the same for both methods indicating 
that the pure profile for this component can be achieved without using 
the given constraint. 

When looking at the differences among the resolved spectral profiles, 
it can be observed that s1 and s3 profiles both differ on similar 

wavelengths around 2080 nm and 1940 nm. These two spectral patterns 
are associated with the second overtone of amide group and to the 
combination O–H stretching, and they can be attributed to both cocoa or 
peanut constituents. Regarding the unconstrained MCR-ALS method, it 
resulted in a higher absorption peak at 2072 nm and a smaller absorp-
tion peak at 1935 nm in s1, and a smaller absorption at 2072 nm and a 
higher absorption at 1935 nm in s3. 

The CSEL constraint had visible effects on the distribution of pixels in 
the MCR space (Fig. 4). Fig. 4A and C show the evolution of the distri-
butions for the c1 and c2 contributions with and without the application 
of the CSEL constraint. The main effect observed was the shrinkage of 
the peanut pixel distribution, which means the variability of the C 
concentration profiles from peanut pixels was reduced after the appli-
cation of the constraint. The small variability of pure peanut pixels was 
expected because they do not contain any sucrose nor cocoa and thus the 
resolved c1 and c3 concentrations should be very low. 

Fig. 4C and D also showed that, in overall, the distribution of the 
mixture pixels was not changed by the application of the constraint. 
Consequently, some scores from mixture pixels were closer to the cluster 
of peanut distribution for the MCR-ALS-CSEL method. On the other 
hand, Fig. 4C shows that the cluster of constrained pixels from the 
chocolate powder pixels is very similar to the cluster of unconstrained 
pixels showing that the MCR-ALS-CSEL is robust. 

These results showed the MCR-ALS-CSEL method was more suitable 
for solving the unmixing problem than the unconstrained one since it 
provided concentration profiles more suitable for detection purposes. 

3.4. The detection results 

In the previous sections, two MCR- ALS methods were used to 
decompose the spectral signatures found in every pixel into different 
components representative of the pure sample constituents. In these 
analyses, two of the resolved components (s1 and s2) were representative 
of chocolate powder while the other (s3) was of peanut. However, we 
observed that, for the two MCR-ALS analyses, some pixels from pure 
(chocolate powder and peanut) samples were decomposed as a mixture 
of non-zero contributions when at least one of the contributions should 
have been of 0. The fact that some pure peanut pixels presented c16¼0 
and c26¼0 and some chocolate powder pixels presented c36¼0 denote that 
there was still some ambiguity in the MCR-ALS resolution. This phe-
nomenon also occurred for the non-constrained pure pixels when the 
MCR-ALS-CSEL method was used, although the abovementioned coef-
ficient contributions were closer to 0 than when the resolution was 
performed with MCR-ALS. This result suggests that the value given of 
0 in c3 (the component representing peanut) must not be used directly as 
the threshold level to determine the presence or absence in our samples. 

Alternatively, using the lowest value found in c3 of pure peanut 
pixels as the threshold level would cause that the detection algorithm is 
very restrictive (Fig. 4B–D shows that only a few pixels from the 10% 
adulterated sample would be selected). Instead, a more sophisticated 
approach is needed to determine peanut adulteration at the pixel level 
from these MCR-ALS results. For instance, to reduce to a larger extent 
the ambiguity of the system, it would have been desirable to constrain 
some pixels from the mixture samples with the CSEL constraint. How-
ever, this is unfeasible as the spatial location of the adulterated pixels is 
not known after performing the mixing. 

To overcome this limitation, we implemented a strategy to determine 
whether a mixture pixel is within the pure chocolate powder variability 
or not. In the latter situation, the pixel could be considered adulterated. 
Therefore, to use this method, the only information needed is the 
product (chocolate powder) variability. 

The distribution of pure chocolate pixels in the MCR space was 
modeled with two Gaussian models using the Expectation-Maximization 
algorithm (see methods). Two Gaussian models were needed to account 
for the specific variabilities of the two major ingredients found in 
chocolate (sucrose and cocoa). The resulting Gaussian models are 

Table 1 
The performance in lack of fit and coefficient of determination (R2) for MCR-ALS 
and MCR-ALS-CSEL.   

MCR-ALS MCR-ALS-CSEL 

Lack of fit (%) 3.16% 3.27% 
R2 0.9990 0.9989  
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represented by the projection of their 99% confidence ellipses in the 
MCR space in Fig. 4. Important observations can be made from the 
analysis of the shape of these ellipses. First, the variability of the choc-
olate powder was effectively reduced on c3when using the CSEL method 
since the ellipses areas from the C concentration profiles obtained in this 
method were smaller than when the non-constrained method was used. 
Second, there were a significant amount of mixture pixels with lower c1 
concentration profile than in the pure chocolate powder pixels. Simi-
larly, some other mixture pixels have higher c3 concentration profile 
than in the pure chocolate powder pixels. A low c1 coefficient cannot be 
regarded as a robust proof of peanut adulteration, as it only indicates 
that a pixel does not contain a standard amount of cocoa. Conversely, a 
high c3 coefficient is undoubtedly indicative of peanut since the asso-
ciated spectral profile is from this ingredient (Fig. 5). However, since the 
interpretation of c1 and c2 concentration profiles may be required for 
cases when peanut adulteration is very low, we implemented a detection 
algorithm that used the information relative to these three concentration 
profiles. 

Specifically, to account for C concentration profiles variability, the 
designed algorithm establishes the peanut adulteration in every pixel on 
the basis to their Mahalanobis distance with the GMM. 

Fig. 6 shows the histograms of the Mahalanobis distances calculated 
between every pixel and the Mixture of Gaussians from chocolate dis-
tribution obtained under both MCR-ALS methods. From this histogram 
representation, a threshold value that discriminates pure chocolate 
powder pixels (blue distribution in Fig. 6) from the rest can be estimated. 
This threshold value corresponds to the highest Mahalanobis distance 
found for the pure chocolate pixels. Thus, any pixel surpassing this 
threshold was considered to be adulterated. 

Fig. 6 revealed important differences between the distributions ob-
tained from the two MCR-ALS analyses. For instance, the distribution of 
the Mahalanobis distances for chocolate pixels was narrower when using 
the CSEL constraint. As a consequence, the detection threshold could be 
set smaller leading to more positive detection pixels in the mixture 
samples. This additional detection power derived from the use of the 

CSEL constraint can be appreciated by comparing the two highlighted 
regions in Fig. 6. In these regions, it can be observed that a higher 
number of mixture pixels were considered to be adulterated when the 
constraint was used. 

To assess the reliability of the detection algorithm, the numbers of 
positive peanut adulteration pixel detections for each sample image 
were calculated (Table 2). From these numbers, it is observed that all the 
pure pixels were correctly assigned to chocolate powder or peanut flour. 
Therefore, the sensitivity and the specificity (calculated from the pure 
samples) are of 1 for the two methods. This shows that the two methods 
are reliable to confirm the purity of the samples. Regarding the mixture 
samples, it is not possible to confirm the validity of the assignment since 
the actual position of the adulterated pixels in the mixture cannot be 
known. However, by comparing the proportion of detected adulterated 
pixels found with the corresponding peanut concentrations, we still can 
evaluate the quality of the detection algorithm. 

Table 2 shows that the number of detections was in line with the 
global adulteration level. For the mixture samples containing 10% 
peanut, the MCR-ALS-CSEL method detected between 8.73% and 
17.00% of adulterated pixels. On the other hand, for the mixture sam-
ples containing 1% peanut, between 0.64% and 1.12% of the pixels were 
found to be adulterated. The unconstrained MCR-ALS method also found 
adulterated pixels at these two concentration levels. Nevertheless, the 
number of positive detections for the unconstrained MCR-ALS method 
was inferior. The coefficient of correlation was used by Vermeulen et al. 
to measure the relevancy of the detection rate between adulterated 
samples (Vermeulen, Ebene, Orlando, Fern�andez Pierna, & Baeten, 
2017). After considering only the adulterated samples, the coefficients 
of correlation were 0.92 and 0.93 for the detection methods using the 
MCR-ALS and the MCR-ALS-CSEL respectively. 

Regarding the mixture samples with 0.1% adulteration, a few adul-
terated pixels were found when data were analyzed with the detection 
algorithm based on the MCR-ALS-CSEL method. However, the same 
samples were considered to be pure chocolate powder samples when 
analyzed with the detection algorithm based on the unconstrained MCR- 

Fig. 6. Histograms of the Mahalanobis distance of every pixel to the GMM. (A) shows the results using the C concentration profiles from the unconstrained MCR-ALS 
method. (B) shows the results using the C concentration profiles from the MCR-ALS-CSEL method. 
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ALS method. Hence, the algorithm based on MCR-ALS-CSEL has a lower 
limit of detection than the algorithm based on the unconstrained MCR- 
ALS. 

Fig. 7 shows the spatial positions of the adulterated pixels on the 
mixture sample image according to both methods. In this figure, it is 
observed that the adulterated pixels are aggregated in clusters, and these 
clusters are larger proportionally with the adulteration level. The pres-
ence of these clusters, rather than a random distribution of the adul-
terated pixels, suggests that peanut flour cannot be homogenized easily 
in the chocolate powder. 

Fig. 8 shows the repartition of the particle size of peanut flour and 
chocolate powder. For peanut, two main modes were observed at 250 
μm and 600 μm and the maximal particle size reached 1 mm. However, 
this particle size distribution did not correspond to the expected particle 
size of the product. For example, the FAO standard for wheat flour limits 
the particle size to be less than 212 μm for at least 98% of the particles 
(Joint FAO/WHO Codex Alimentarius Commission, 1995). The appari-
tion of bigger particle clusters could be explained by the agglomeration 
phenomena of small particles, which might have occurred during the 
mixing process. Therefore, the observed clusters of detected pixels in the 
spectral data correspond to agglomerated peanut particles. 

To conclude, the detection maps in Fig. 7 compare both detection 
methods. These figures, apart from revealing that the MCR-ALS-CSEL 
method detected much more adulterated pixels than without the 
constraint, also show that the coincident adulterated pixels were found 

Table 2 
Number of detected pixels in each sample image when using the MCR-ALS and 
the MCR-ALS-CSEL methods. A, B, and C stand for the different sample replicates 
at each concentration.  

Concentration of 
peanut (%) - 
replicate 

MCR-ALS-CSEL MCR-ALS 

Number of 
detections a 

Percentage of 
detection (%) 
b 

Number of 
detections a 

Percentage of 
detection (%) 
b 

100% - A 3721 100 3721 100 
100% - B 3721 100 3721 100 
100% - C 3721 100 3721 100 
10% - A 382 10.30 45 1.21 
10% - B 325 8.73 39 1.05 
10% - C 633 17.00 82 2.20 
1% - A 29 0.78 2 0.05 
1% - B 24 0.64 2 0.05 
1% - C 44 1.12 1 0.03 
0.1% - A 9 0.24 0 0 
0.1% - B 11 0.30 0 0 
0.1% - C 1 0.03 0 0 
0% - A 0 0 0 0 
0% - B 0 0 0 0 
0% - B 0 0 0 0  

a Number of detected pixels in the image containing a total of 3721 pixels. 
b Proportion of detected pixels with respect to the total number of pixels in the 

image (3721 pixels). 

Fig. 7. Each image summarizes the detection map for 
one sample and the two detection methods: MCR-ALS 
and MCR-ALS-CSEL. The color code of each pixel in-
dicates the method(s) used showing positive detec-
tion. Letters A, B, and C stand for the different 
replicate samples. These figures are obtained by 
refolding the C matrix from the MCR-ALS methods 
and after applying the detection method. (For inter-
pretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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in the center of the clusters. This particular pixel distribution can be 
explained because those pixels contain a higher quantity of peanut, and 
therefore are more likely to be recognized by the detection methods as 
adulterated pixels than those from the outer regions of the clusters. 

These results showed that the proposed methods, and in particular 
the one using MCR-ALS in combination with the CSEL constraint, are 
very reliable to detect food adulterations even at low concentration 
levels. The analysis of the adulterated pixels highlighted that the method 
presented a promising detection power, as the number of adulterated 
pixels was coincident with the experimental conditions in the terms of 
signal-response. Moreover, this detection method also revealed that 
peanut adulteration in chocolate powder is not homogeneous and forms 
clusters of particles. Despite the spectral similarities of chocolate powder 
and peanut flour, the presented approach could lead to satisfactory de-
tections of the adulterated pixels. Therefore, this methodology has po-
tential to be used for solving other complex food adulteration systems. 
Additionally, the detection results showed that low adulteration levels 
can be detected by screening a small number of pixels. In our case, we 
were able to detect peanut adulteration in a chocolate powder matrix 
mixed with 0.1% peanut by only screening 61 � 61 pixels. 

4. Conclusion 

The capability of near-infrared hyperspectral imaging supported 
with the chemometric method MCR-ALS to detect peanut flour in 
chocolate powder was demonstrated. 

Detection of adulterated chocolate powder pixels with peanut flour 
could not be achieved with PCA due to the intrinsic complexity of the 
problem, as the spectra of chocolate powder and peanut flour are very 
similar and peanut adulteration occurred at the subpixel level. To cope 
with this situation, MCR-ALS was used instead. Specifically, we tested 
two different MCR-ALS methods: a method that incorporates a selec-
tivity constraint and another that does not. The best results were ob-
tained for the constrained MCR-ALS, highlighting that the detection of 
peanut adulteration in chocolate powder is a very challenging problem. 

MCR-ALS results were used to build a metric for assessing peanut 
adulteration. With this metric, we were able to detect peanut adultera-
tion in all the contaminated samples. On the other hand, a selectivity 

and sensitivity of 1 were obtained on the pure samples. A correlation of 
0.92 and 0.93 were obtained between the number of adulterated pixels 
and the real concentration of mixed samples for MCR-ALS and MCR- 
ALS-CSEL respectively. These results support the fact that the selec-
tivity constraint was efficient to obtain spectral profiles closer to the real 
ones and to detect more adulterated pixels. 

Due to its high performance, the method has the potential to be used 
for similar systems involving powder samples. Future work will be 
carried out to optimize the data acquisition and measurement, ac-
counting by the sensitivity of the hyperspectral camera and the pene-
tration depth of the near-infrared radiations. More advanced technique 
could also be used to optimize the MCR-ALS algorithm locally. For 
instance, the local rank analysis enables to estimate the complexity of a 
neighborhood of pixels to set the number of component (De Juan, 
Maeder, Hancewicz, & Tauler, 2005). Using this method, the MCR-ALS 
fitting may be improved locally. 
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